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Abstract

ii

Gusts from boundary-layer-scale convective eddies modify the structure
of the atmospheric surface layer by intermittently intensifying or dimin-
ishing the local wind speed. A simple model for the effects of these gusts
is proposed, based on the following two assumptions: (1) the wind gusts
have an isotropic Gaussian probability distribution with standard devia-
tion proportional to w. (the convective velocity scale) and (2) the surface-
layer wind and temperature profiles attain local equilibrium with the wind
gusts. The minimum friction velocity predicted by the model has the same
dependence on surface roughness predicted by Schumann’s earlier “slab”
model for convective boundary layers. However, the current model also
applies to situations where the mean wind is nonzero. It predicts the break-
down of global Monin-Obukhov similarity for the surface-layer wind shear
and temperature gradient in highly convective conditions (U, /u, approxi-
mately 1 or smaller, where U, is the mean wind speed at the top of the
surface layer). Also in contrast to existing similarity theories, the horizon-
tal wind variance exhibits a significant dependence on height and surface
roughness near the ground, even for moderate convection. The tempera-
ture variance is nearly unaffected by the gusts, because of its weak depen-
dence on the local wind speed in convective conditions.
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1.

Introduction

One of the primary goals of micrometeorology is to develop statistical de-
scriptions for the surface-layer (near-ground) structure of the atmosphere.
These statistical descriptions have many valuable applications, such as fore-
casting the turbulent transport of biological and chemical agents and cal-
culating the propagation of acoustic and electromagnetic waves. The most
successful model for surface-layer statistics is the turbulence similarity the-
ory developed by Monin and Obukhov (1954), which hypothesizes that the
statistics depend on just four parameters: the friction velocity u., the sur-
face temperature flux Q,, the buoyancy coefficient b = g/Ts (where g is
gravitational acceleration and T, the surface temperature), and the height
from the ground z. Note that no parameters in the Monin-Obukhov sim-
ilarity theory are related to the large-scale structure of the atmospheric
boundary layer.* The theory assumes that surface-layer processes are not
significantly affected by the large boundary-layer-scale eddies (also called
thermals or plumes) characteristic of convective conditions.t

Primarily during the 1960s and 1970s, semiempirical equations for the ver-
tical profiles of mean wind and temperature were developed on the basis
of Monin-Obukhov similarity. These equations fit the vertical profiles quite
well and have since come into widespread use. Other statistics, such as the
temperature and vertical velocity, have also been found to agree with the
theory. Nonetheless, experiments have clearly demonstrated that not all
near-ground statistics obey Monin-Obukhov similarity. Most significantly,
the theory does not work well for the variance and spectrum of the horizon-
tal wind components, which have been found to depend on z;, the height
of the boundary-layer capping temperature inversion (Kaimal et al, 1976;
Caughey and Palmer, 1979; Khanna and Brasseur, 1997). Furthermore, Bel-
jaars (1994) and Grachev et al (1998) demonstrated that parameterizations
for surface fluxes and drag coefficients in convective conditions agree bet-
ter with observations when the wind speed is replaced by a scalar average
proportional to the mixed-layer velocity scale, w. = (Qszig/ T,)'/3, which
is representative of the large eddies.

Potential limitations of Monin-Obukhov similarity in convective condi-
tions were actually anticipated decades ago, apparently first by Businger

*The boundary layer is defined as “the layer of air directly above the Earth’s surface in
which the effects of the surface (friction, heating, and cooling) are felt directly on time scales
less than a day” (Garratt, 1992, p. 1). It is typically 500 to 3000 m deep during the daytime.
The surface layer can be thought of as the lowermost tenth of the atmospheric boundary
layer.

t Convective conditions here means that boundary-layer turbulence is being produced pri-
marily by buoyant instabilities, as opposed to wind shear. The buoyant instabilities usually
dominate when there is solar heating of the ground.




(1973a,b). The main purposes of this report are to systematically address
the behavior of surface-layer statistics in convective conditions and to pro-
vide a quantitative assessment of the breakdown of Monin-Obukhov sim-
ilarity in these conditions. The framework I adopt is an extension of con-
cepts developed by several previous authors, including Schumann (1988),
Sykes et al (1993), Beljaars (1994), and Grachev et al (1997, 1998). The un-
derlying principle is that large-scale convective eddies (circulations), which
span the depth of the boundary layer, affect near-surface transfer processes
by inducing a fluctuating local surface stress. Grachev et al (1997) aptly call
this the convection-induced stress regime to differentiate it from the situation
where stress is induced primarily by a steady wind. To quote those authors:

Close to the surface, a large-scale convective eddy has an in-
stantaneous local wind profile which rapidly achieves a steady
state. The local structure of such a profile should be essentially
the same as in the usual mean wind profile (Kraichnan, 1962;
Businger, 1973a). As a result, free convection can be treated as a
particular case of forced convection (Sykes et al, 1993; Beljaars,
1994).

Therefore it is reasonable to apply the Monin-Obukhov similarity theory
locally to statistics in the near-surface region of the large-scale convective
eddies, even though application to global (ensemble) average statistics may
be tenuous.

In section 2, I show how the premise of local equilibrium, when combined
with a probability distribution for the wind gusts induced by the large-
scale eddies, leads to a simple and workable methodology for calculating
surface-layer statistics. This model is applied to the calculation of mean
vertical profiles and variances in section 3. Two appendices follow the body
of the report: appendix A discusses the value of numerical constants used
in the model, and appendix B provides approximate analytical results for
large-scale eddy effects on atmospheric statistics.
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2. Modeling Surface-Layer Gusts

21 Concept

In the conventional decomposition of turbulence first proposed by
Reynolds, fields such as wind and temperature are written as the sum of
mean and fluctuating parts. For the wind velocity component aligned with
the mean flow direction, the Reynolds decomposition is

U={U)+u, (1

where U is the instantaneous wind speed, v the fluctuation, and angle
brackets indicate the ensemble mean. If we hypothesize that the turbulence
attains a local equilibrium with the large-scale convective eddies, an appro-
priate alternative decomposition would be

U= (U, +u, (2)

where the subscript L on the angle brackets indicates a local mean value.
The meaning of local here is admittedly imprecise. The general idea is that
a spatial filter is applied in the horizontal plane, eliminating motions with
scales smaller than those of the large-scale convective eddies. A filter hav-
ing a cutoff in the range 0.1z; to 0.3z; would serve the desired purpose.” A
filter in time could serve in place of the spatial one.

Since (u) is zero by hypothesis, if we take the global average (ensemble
mean) of equation (2), it follows that the global average of locally averaged
quantities is simply the global average:

({U)={{U)) - ®)

Throughout the rest of this report I refer to the variations in wind velocity
resulting from large-scale convective eddies simply as gusts. This terminol-
ogy is borrowed from previous authors, including Godfrey and Beljaars
(1991) and Grachev et al (1998). Colloquially, “gusts” can refer to variations
in the wind velocity other than those originating from large-scale convec-
tive eddies, such as activity associated with a thunderstorm or a frontal
passage.

Figure 1 illustrates the concept that local vertical profiles of wind and tem-
perature obtain equilibrium with gusts, as opposed to the actual mean

*The concept of applying a filter to separate large-scale motions from smaller ones is
discussed in more detail by Tong et al (1998). The purpose of the filter in this report is to
separate the large-scale convective eddies from other smaller scale motions. The purpose

of Tong et al was somewhat different: to mimic the resolvable-/subgrid-scale partition in
large-eddy simulation.




Figure 1. Vertical
profiles of wind and
temperature measured
at differerent
hypothetical stations
(1-4), separated in
either space or time.
Profiles are averaged
with local filter. Upper:
Profiles for a flow
having no significant
gustiness. Lower:
Profiles for a flow
having pronounced
gustiness. Local
temperature profiles are
in equilibrium with
gusts. (Arrows
represent horizontal
wind velocity. Gray
scale represents
temperature, with light
shading being warmer
air.)

wind, (U). Shown in the figure are the vertical profiles of wind and tem-
perature, after applying the local filter (),, at different measurement lo-
cations. For the hypothetical situation illustrated in the upper part of the
figure, the flow structure at scales greater than the filter cutoff is negligi-
ble, so all the observed local profiles are nearly identical. The wind speed
increases roughly logarithmically with height, and a layer of warm air lies
next to the ground. The local profiles at each station are in equilibrium with
the mean wind speed. For the situation illustrated in the lower part of the
figure, gusting is significant, and the local wind and temperature profiles
come into equilibrium with the gusts. At station (1), a locally strong gust
is mixing warm air upward from the ground. At station (2), little deviation
of (U),, from (U) occurs so that the wind and temperature profiles are the
same as in the upper figure. At station (3), motion from a large-scale eddy
is in the opposite direction of the prevailing wind, hence decreasing the lo-
cal wind speed. As a result, turbulent mixing is weakened, and most of the
warm air remains near the ground. If the motion from a large-scale eddy
is strong enough, the wind may actually shift direction from the prevailing
one, as shown for station (4).

Strictly speaking, neither of the situations illustrated in figure 1 pertains to
the customary application of Monin-Obukhov similarity theory; that the-
ory applies to the ensemble flow characteristics. Even though the wind may
vary locally because of individual gusts, the flow is not required to obtain a
local equilibrium with them. Local states of the flow are just samples of the
global ensemble, and the similarity theory is intended only for the global
ensemble. However, one might anticipate that Monin-Obukhov similarity




cannot be applied satisfactorily to a global ensemble unless the local flow
samples are all nearly the same as the global average, as in the upper part
of figure 1. Otherwise, the premise that large- (z;-) scale eddies do not sig-
nificantly affect the near-ground flow is violated.

What justification does one have, though, for applying Monin-Obukhov
similarity to locally averaged flow fields? A simple supportive argument
follows from the relative time scales of the large-scale convective eddies
and the smaller surface-layer ones. The convective eddies have a time scale
of z/w,. Taking z; ~ 1000 m and w, ~ 2 m/s as representative implies
an approximate time scale of about 8 min. The surface-layer eddies have
a time scale of z/u.; with z ~ 10 m and u, ~ 0.3 m/s, z/u, is about 30
s. Therefore the time scale of the convective eddies should be one to two
orders of magnitude larger than that of the surface-layer eddies. Given this
disparity, one might reasonably expect the surface-layer eddies to obtain a
rough equilibrium with the gusts.

So far, I have discussed only large-scale variations in wind velocity. Of
course other quantities, such as the surface heat flux or temperature, could
also vary locally. These variations could even occur over uniform terrain, as
a result of clouds blocking incoming solar radiation, and other processes.
In this report I chose to neglect such possible variations for simplicity, al-
though these could be treated in a manner analogous to the wind gusts.

2.2 Statistical Distribution

This section builds a general framework for calculating modifications to
surface-layer statistics caused by the gusts (large-scale convective eddies).
The basic idea is to specify a probability density function for the wind-
velocity components at some reference height. Local application of Monin-
Obukhov similarity then allows calculation of other statistics.

To begin, we follow Godfrey and Beljaars (1991) and Grachev et al (1998)
by defining a horizontal gust velocity G (the contribution of the large-scale
convective eddies to the local wind, denoted W¢; by Godfrey and Beljaars
and U by Grachev et al) through the relation

UL(2) =(U() + G (2) - @)

(Boldface type in this report indicates a vector quantity; the same sym-
bol without bolding represents the magnitude of the vector.) Taking the
squared magnitude of both sides of equation (4) results in

U2 (2) = (U (2)) + Gz (2)]* + G5 (2) , ©)

where G, (z) and G, (z) are the along-wind and crosswind components of
the gust velocity, respectively. Averaging both sides, while keeping in mind
that (G (2)) =0, results in

(U} (2)) = (U (2))* + (G (2)) , 6)




where (G? (2)) = (G2 (z)) + (G2 (2)). Godfrey and Beljaars and Grachev
et al set

(G? () = Bu? . 7)

where § is an empirical factor, called the gustiness coefficient. In this report, I
set § =0.95and z, = 0.1 z; for reasons discussed in appendix A. For brevity,
Tusually drop the explicit functional dependence of quantities such as U (z)
and G (z) on z when they are to be evaluated at z = z,. I also abbreviate
the local wind velocity (U (z,)); as Uz, and (U (z,)) as U,..

Provided that the gusts have random orientation, equation (7) implies that
the variances (G3) and (G3) at the reference height must individually be
B*w? /2. To complete a probabilistic model, I will make the assumption that
G, and G, are independent, Gaussian random variables. The approximate
Gaussian nature of turbulent fluctuations is well established (Batchelor,
1953, pp 169-170), whereas the independence of G, and G, follows from
the isotropic nature of the gusts. The joint probability density function (pdf)
for G, and G|, is therefore

1 G2+ G?
PG (Ge, Gy) = —— exp (—————’) : (8)

732w?2 32w?

Given the pdf for the gusts, surface-layer statistics can be calculated from
the general formula

<f (Ura Qs 2, 20, Zz\,g/Ts)> = / / f (Ur-, Qs. 2. 20. Zi-,g/Ts-, Gr. Gy) bG (Gn‘: Gy) dG.Tde , 9)
J—oc J -0

where f(Uy, Q. 2. 20. 21, 9/T5. Gy, Gy) is a function of interest, and
(f (Ur.Qs. 2, 20, 2. ... )) its ensemble mean. As an example, consider the
mean wind speed at the reference height, (U). Since

UL (Ur.Gz.Gy) = \J(Uy + G)* + G2, (10)
we have
1 o0 oo 5 " Gi + Gi
(U) = PR /_oo /_oo \/(Ur +G2)” + Glexp T Rur dGdG, . (11)

Solution of this type of integral is discussed in appendix B. The result is

-9 -2
(1+Uf) Iy (%) + T, (%)] . (12)

where U, = U, /Buw,, and the I,,’s are modified Bessel functions of the first
kind. In the limit U, — 0, one can show (U;) — /7w, /2.

i) _ V7 )
Bw, 2




Of course, to be useful, this method must be extended to quantities in
addition to (Ur). We would like to calculate, for example, mean profiles
and variances in the presence of gusts. This is where the assumption of
local equilibrium enters into the problem. The basic strategy is to use lo-
cal equilibrium to determine a local friction velocity, u.r, as a function of
(Ur, Qs, 2, 20, 2i, 9/ Ts, Gz, Gy)- Then, given an equation for the quantity of
interest in terms of the friction velocity, we can apply equation (9) to deter-
mine its statistics.

The basic Monin-Obukhov similarity equations for the vertical gradients of
mean wind and temperature are the starting point for formulating such a

solution.* These are (e.g., Panofsky and Dutton, 1984; Kader and Yaglom,
1990)

d(U)  u« z
PP Ed)M (f) , and (13)
dz kz o (f) ' (14)
Here T, = —Qs/u, is the surface-layer temperature scale, x =~ 0.40 is the

von Karméan constant, and P; ~ 0.9 is the turbulent Prandtl number. The
functions ¢y and ¢y are hypothesized to have a universal dependence on
the nondimensional height ¢ = z/L, where L = —u3T}/ (kgQs) is called the
Obukhov length. The form I use in this report for the functions ¢, and ¢ g
is (Carl et al, 1973)

éurm (€)= (1 — anu¢) " (15)

where aj; and ay are empirical constants. The vertical profiles, found by
integrating equations (13) and (14), are

(U (2)) = 3‘; [mzio Uy (%) Uy (%)} . and (16)
(T(2)) = T (z) + T’f t [m -5; — Uy (%) + 0y ('f)] L@

The quantity zj is the aerodynamic roughness length (the height at which
the velocity vanishes), and zj, is a reference height where the temperature
is measured. The functions ¥, and ¥y are defined by

§q1 _
Wi ()= [ 2 g, (18)

0 T

Performing this integration, one finds (Grachev et al, 1998)

14 o7ty + 677 1+ 2671
U u (§) = —gln ¢M’}§ OvH V3 arctan ———%ﬁi— + % . (19

*Throughout this report, I use “temperature” implicitly to mean the virtual potential tem-
perature. The virtual potential temperature includes corrections for the effect of water vapor
and air buoyancy (Stull, 1988).




The basic premise of the local equilibrium theory is that these equations
apply locally to the gusts. Hence we replace them with

(€s cosf + e, sin ) —L [m Z <——> + 0y <i>] . and  (20)
' K 20 Ly Ly,

PQs z < Zh
T (z) — NfL' [m; — Uy (—L—L) + 0y (ﬁ)] . (21)

where 6 is the local wind direction, u,; is the local friction velocity induced
by the gusts, L; = «3, T,/ (kgQs), and e, and e, are the unit vectors in the
z- and y-directions. Orienting the coordinate system so that the mean wind
direction is along the 2-axis, one has immediately (with application of the
constraint (U) = ((U),))

<u*LC089hM (LLL E‘IL>> = k(U(z)) . and (22)
<u*L sin @ hag <LLL L—2>> =0. (23)

where
haru (T, y) = 111:;; —Uarn (@) + Yarn (y) (24)

Taking the magnitude of equation (20) results in

Up = &y, < ZO) . (25)
KN

Ly Ly

Equating this result to equation (10) yields

VU + G2+ G2 = Ly, <-L—L ﬁ) . (26)
This equation can be solved, in principle, for ., as a function of U,, Qs,
20, zi, 9/Ts, Gz, and G,. However because h,; in equation (25) is a com-
plicated nonlinear function of L;, and Ly, is in turn proportional to u?,, it
is not possible to analytically solve equation (25) for w.,. Fortunately the
equation can be solved numerically for u,;, without difficulty. The simplest
method is to calculate a look-up table of U}, values for a range of uniformly
distributed u,,, values. Then, given a new value of Uy, the corresponding
value of u.j, can be found by interpolating in the table. Figure 2 shows the
dependence of Uy, /w, on u,,/w, for several values of z9/z;. (The motiva-
tion for normalizing the velocities by w, and then plotting with zy/z; as a
parameter are discussed in sect. 2.3.)

When temperature statistics are calculated, it is necessary to specify z;, and
T (zp) in equation (21). This is actually very problematic in the context of
the local equilibrium model. The most reasonable approach may initially
seem to be setting z;, and 7' (z),) to constant (global) values, with T'(z,)
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Figure 2. Local wind
speed as a function of
local friction velocity.
Four curves are shown,
corresponding to
different values of ratio
Zo/Zi. (FOI‘ Zi = 1000 m,
zo/z = 1075 is
representative of a
grassy surface, whereas
10~4 is representative of
mature crops or brush.)

101 L Zo/Zi = 10_5

100

Local wind speed, L (z;)/w.

—_
o

N
1

102
102 101 100

Local friction velocity, u,g/w.

being the surface temperature and z; the thermal roughness length of the
surface. The problem with this approach is that the local fluctuations in u.r,
(and therefore T,r) then create extremely large temperature fluctuations
at z = z,. These fluctuations are associated with turbulence length scales
above the cutoff for the local filter; that is, they come from the convective,
z-scale eddies whose velocity fluctuations are specified by equation (8). In
actuality, observations suggest that the temperature variance o2 does not
depend on the large eddies, even well above the surface layer. Therefore
this approach is not physically realistic. The root of the difficulty is that
2z, and T (25, vary in response to the gusts. As discussed by Panofsky and
Dutton (1984, p 147), z;, should be order kp, /ux, where kj, is the molecular
coefficient of heat conduction. In the context of local equilibrium, then, z,
is order kp,/u.z. When the wind slackens, the layer adjacent to the ground
thickens where molecular heat conduction dominates. A strong gust ex-

tends turbulent mixing closer to the surface, causing the molecular layer to
shrink.

To circumvent the problem of specifying the dynamic response of zj, and
T (z3,) to gusts, I will assume that the variance of the locally averaged tem-
perature fluctuations, (TZ) (where Tg = (T), — (T)), is zero at z = 2, as is
consistent with observations. Then we can simply apply equation (21) with
21, = 2, and with T (z,) fixed to the global value. Results derived from this
approach must be viewed as speculative; fortunately only a few of the cal-

culations (specifically the temperature gradient and variance) in this report
depend on it.

2.3 Nondimensionalization

Suppose we apply the methodology in the previous section to determine
statistics in the atmospheric surface layer. Such statistics would generally
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depend on the parameters U,, Q,, g/Ts, =, z, and z;. (Other parameters,
such as L and w,, can be written as combinations of this set.) It would
be rather clumsy, though, to systematically study the dependence of the
statistics on all five of these parameters. Therefore we might ask whether
the parameter dependence can be simplified in some fashion. In this section
I show that it is possible to reduce the dependence to just three basic ratios
involving the five original parameters, specifically U, /w., z/z;, and zy/z;.
The z/z; dependence drops out if z is not part of the original parameter set.

As will become apparent in section 3, most wind and temperature statis-
tics of interest are proportional to ensemble averages involving powers of
the local friction velocity, along with cosines and sines of the local wind
direction. Therefore we are faced with the general problem of converting a
function whose explicit dependence is on u,, cos#, and sin 6, to one with
dependence on U,, Qs, etc, so that equation (9) can be applied. To start,
consider equation (25) evaluated at z = z, and recast in the following form:

U 1wy Kou?d kzoud
— =" - ';*— =) . (27)

Uy K Wy Zj’ll'*L Zj’ll‘i[‘

This version uses the relationship Ly = — (z;/x) (u.r,/w,)®. Since the value
0.1 z; is used for z;, the right-hand side is a function entirely of u, /w, and
20/ z;. If T assume that h,; is an invertible function, then some function b
must exist such that

- 2 2
ey (UL 203 U GV (Gu) ) (28)
Wy Wy & Uy Wiy Uy s

Furthermore, from basic trigonometric arguments,

cosf = UG and (29)

U+ G+ a2
sinf = Gy . (30)
VU + G+ 2

With h,, given by equations (19) and (24), analytical determination of the
function b is impossible. The important point here, though, is the existence
of the function b. Now, suppose we wish to know the average value of some
function f (u.r/w,. ). Using equations (28), (29), and (30) to determine the
dependence of f on U, /uw., G, /w,, Gy/w., and z/z; results in the proba-
bility integral

o o' T 2 2
()= [ (B ) e (2) 2)
Wi U We Wy Wi Zi

G,
arctan (ﬁ)] G (G, Gy) dG,dG,, . (31)

S
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Transforming the Variables of integration to the dimensionless ratios G, =
Gy/w. and G}, = G, /w., and assuming that the joint pdf depends only on
these ratios (as does the Gaussian pdf in the previous section, eq (8)), L have

()= [ () ).

G )
arctan (Ur +ny>] pa (Gy, Gy) dGLdG, . (32)

The function f now depends entirely on U, /w, zo/zi, Gy, and Gy, The de-
pendence of (f) on G}, and G}, is of course eliminated by the integration,

leaving
<f<“Lﬁ)>=g(9;@), (33)
Wi Wy 2§

where g is the result of the integration. This theorem demonstrates that
statistics involving u,r,/w, and/or 6§ depend only on U, Jw, and 2o/ z;, al-
though in practice it may be impossible to actually obtain an analytical ex-
pression for the function g (Uy /ws, 20/ 2i)-

An interesting special case of the preceding theorem that applies to the
average friction velocity in the limit of vanishing mean wind was proposed
by Businger (1973b). He suggested that

et gy (2. (34
W 20

where gp is an unknown function. The validity of this scaling relationship
was later supported by Schumann’s (1988) analysis based on a simplified
bulk model for the atmospheric surface layer. Equation (33) implies the
same scaling relationship, since the dependence on U, /w, disappears in
the limit of vanishing U,. In this report, the procedure for deriving this
relationship was much different from Schumann’s, however, being based
instead on the statistical nature of the gusts. Furthermore, it is now clear

that any statistic of u.;, and/or 6 depends solely on zo/z; when the mean
wind is zero.

Several valuable corollaries of equation (33) can be easily derived. First, let
us consider statistics of quantities that additionally depend on z/L. Since

z/LL « (z/2;) (we/us 1)? and the ratio w./u.z, has already been accounted
for, a dependence on z/z; is introduced:

(-G, e
ws L, Wy Zi Zi

A local dependence on zo/Ly, would not add new dependencies to the re-
sult, since zo/L1  (z0/7:) (W«/us 1)®. Next consider statistics that depend
on Tu;, = —Qs/uxr, as is usually the case for functions involving tempera-
ture. Defining a mixed-layer temperature scale as 6. = —Qs/w«, we can

11




write T, /0, = w./u.r. Again, no new dependencies are added to the re-
sult. Hence we have, most generally,

u.p Ty 20 2o U,
. —.—.0 = —.
<f < wy 6, Lp Lp >> g <'u'*

An important application of equation (35) made later in this report is to
statistics of the height-dependent gust profiles G, (z) and G, (z). From
equations (20) and (4), we find

-~ ot ot '3 <
Ga (2) = 1w, cos B hyy (f*’_’wou*> B U (z) . and (37)

2] e

. ‘—“) . (36)

2i

wy Ko, Lozl Uy

Gy (z Ly, . z Kzouw?
v (2) = ~Zsinfhy | —. - — | - (38)
Uy K Wy L Uy,

The terms in equations (37) and (38) involving the function h,; depend on
Uy, /Wy, z/L, and zy/z;. Therefore, equation (35) shows that statistics of
these terms depend on U, /w., z/2;, and zg/z;. Taking the global average of
equation (20) yields

N | i 3
(U (=) _1 <u*1, cos @ hpy <:" —MOU*>> . >

Wy K\ Wy L zi'u'zl

We see that this term also depends on U, /w, z/z;, and zy/z;. Therefore

(r(BHEB)) - (L2 (40)
W ' Wy z %

24 Generalized Similarity Theory
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Although it is not immediately obvious, the nondimensionalization theo-
rems in the previous section imply modifications to the Monin-Obukhov
and other similarity theories for the surface layer. Before discussing these
modifications, I will review several of the common similarity theories:

Monin-Obukhov similarity (Monin and Obukhov, 1954): The basic physical pa-
rameters hypothesized to be significant are ., Q,, b = g/T}, and z. This pa-
rameter set possesses only three fundamental physical dimensions: length,
time, and temperature. According to Buckingham’s 7 theorem (see, for ex-
ample, Stull, 1988), we should therefore select just three of these parameters
as key. The three that are conventionally selected are u., Q,, and z. Quan-
tities scaled (made dimensionless) by these parameters must be functions
of a single dimensionless ratio. This dimensionless ratio is taken to be z/L,
where L = —u3T,/ (kgQ,) is the Obukhov length. (The minus sign and
constant x in L are also matters of convention.)

Local free-convection similarity (Wyngaard et al, 1971): The basic physical pa-
rameters are the same as Monin-Obukhov similarity, except that wu, is
dropped from the set. The remaining three parameters incorporate the




_—

three physical dimensions of length, time, and temperature. As no di-
mensionless combinations can be formed from these parameters, quanti-
ties scaled by them must be constant. For example, quantities with dimen-

sions of velocity, when divided by the derived scale uy = (Qszg / Ts)l/ 3, are
constant.

Mixed-layer similarity (Deardorff, 1970): This scheme is the same as free-
convection similarity, except that z; replaces z. The velocity scale w, =
(Qszig/ Ts)l/ 3 therefore replaces uf.

All three of the preceding similarity theories have been applied to
surface-layer statistics. Monin-Obukhov similarity is widely applied to the
mean profiles for both mechanical and convective turbulence. Local free-
convection similarity is applied to the temperature and vertical velocity
variance in convective conditions. Mixed-layer similarity is applied to the
horizontal velocity variance in convective conditions.

Suppose now that the parameters from all three of these schemes are com-
bined, resulting in the five-parameter set u., Qs, b, z, and z;. Three of these
parameters (or combinations thereof) can be taken as key. Quantities scaled
by the three key parameters must depend on two dimensionless ratios. Nu-
merous combinations of key parameters and dimensionless ratios are pos-
sible. To generalize Monin-Obukhov similarity, we would logically take
s, Qs, and z as the key parameters, and the two dimensionless ratios as
z/L and z;/L. Alternatively, we could formulate a generalized mixed-layer
scheme with Qs, b, and z; as the key parameters. For the dimensionless ra-
tios, the only restriction is that u, and z must be uniquely recoverable. So
we may take these ratios to be u. Jws and z/z;, for example.

The roughness length z is not included in any of the three similarity the-
ories described earlier. Omission of zq can be justified on the basis that the
structure of a high Reynolds number flow should be independent of rough-
ness at heights z > zo (Tennekes and Lumley, 1972, p 146). However, this
reasoning overlooks possible interactions between large-scale eddies and
the surface, a phenomenon that plays a central role in the model described
in this report. Therefore zy should generally be included in the parameter
set. Forming a six-parameter set by adding z to the five discussed in the
preceding paragraph, we conclude that scaled quantities must depend on
three dimensionless ratios. For the generalized mixed-layer scheme, these
can be taken to be u. /ws, 2/, and zo/z;.

The nondimensionalization theorems in section 2.3 are closely analogous
to this generalized roughness-inclusive mixed-layer scheme. The main dif-
ference is that mean wind speed U, appears in place of u.. Such a scaling
could have been argued by choosing U, Qs, b, z, zo, and z; as the initial
six-parameter set, as long as the reference height does not introduce a new
scale (i.e., the reference height must be proportional to either zo or z;). The
reason for preferring U, over u, in the present model is that it simplifies
the formulation of the pdf for the wind velocity at the reference height. We
now see that the nondimensionalization theorems are consistent with, and
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could have been anticipated on the basis of, a generalized mixed-layer sim-
ilarity theory that incorporates U,, z, and z, in addition to the standard
parameters (), z;, and b. The model in section 2.2 provides a framework
for calculating the similarity functions.




3. Effect of Gusts on Atmospheric Statistics

In this section, I apply the framework for calculating gust effects on at-
mospheric statistics. The calculations involve the numerical integration of
equation (9) with pg (G, Gy) given by equation (8), and u.r determined
from equation (25). The numerical integrations were done on a square grid
defined by —12w. < (G, Gy) < 12w,. The grid had 201 evenly spaced
points in both the z- and y-directions. The calculations require only a few
seconds each on a desktop personal computer.

3.1 Friction Velocity

Let us begin by applying the methodology developed in section 2.2 to the
friction velocity. The familiar global version of the friction velocity u. is
defined through the equation

u? = — (uw) . (41)

In this equation, u is the fluctuation in the horizontal wind component
aligned with the mean wind and w is the fluctuation in the vertical com-
ponent. Similarly, the local friction velocity is defined as

uzL = <ulw>L ’ (42)

where the prime indicates the coordinate system aligned with the local
wind direction 6. By elementary trigonometry,

u=ucosf—'sinf, (43)

where v is the horizontal crosswind component of the wind. Multiplying
through by —w and taking the local average, one finds

— {uw); = — (w'w) cosf + (V'w), sinf . (44)

When I substitute equation (42) and set (v'w); = 0 (a result of local sym-
metry in the turbulence statistics), this becomes

— (uw)y = ulpcosf . (45)

Now, by taking the global average and recalling that the global average
of a local average equals the customary global average (see sect. 2.1), one
obtains the result

u? = <u2L cos 9> . (46)

We see that the global friction velocity is not the simple average of the local
one. The changing wind direction plays a role through the factor cos 6. If 6
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Figure 3. Global (solid
lines) and average local
(dashed lines) friction
velocity as a function of
vector-average wind
speed at reference
height, U,.. Dotted lines
are an approximation
for average local friction
velocity based on mean
local wind speed, (UL).
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is randomly distributed in all directions, the cos f factor has zero mean, and
u, vanishes.

The global friction velocity is compared to the averaged local value, (u. ),
in figure 3. For wind speeds U, larger than w,, the global and averaged local
values are nearly the same. As the wind speed approaches zero, however,
the global value vanishes, whereas the local average becomes constant.
This asymptote is the minimum friction velocity recognized by Businger
(1973a,b), Schumann (1988), and others. Also shown on the figure are ap-
proximate results for (w.r) based on the average local wind speed at the
reference height, (U1), as given by equation (12). I found these results by
solving equation (25) for w.,, except that I replaced the local wind speed by
(UL). The resulting value of u,; will be designated as u, o in the remainder

of this report; that is,
u
*.off ]7,"\] < ) .
K

where Leg = —u, o Ts/ (kgQs). The figure demonstrates that u, oq is a very
good approximation to the actual value of (u. ) for all reasonable combina-
tions of U /w, and zy/z;. This observation lends support to the analyses of
Godfrey and Beljaars (1991) and Grachev et al (1998) who use an effective
value for u. based on the mean wind speed.

Zr 20

<UL> N L(‘ﬂ“ chT

(47)

Let us analyze now in more detail the vanishing mean wind speed, us-
ing approximate forms for ¢,; (¢) that will allow us to obtain an analytical
solution. Simple approximations for ¢, (¢) are available for the two limit-
ing cases of neutral and free-convection stability. It may seem obvious, at
first glance, that we should use the free-convection stability limit, namely
énr (€) =~ (—a,M()_l/3 (Carl et al, 1973; Kader and Yaglom, 1990). However,
we should keep in mind that even when the mean wind vanishes, there
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is still local shear from the gusts. Sykes et al (1993) actually based their
analysis on locally neutral profiles. So, to be careful, we should calculate
the neutral and free-convection stability limits for the local wind profiles
separately and then compare the results to numerical calculations made
with the full Monin-Obukhov similarity equation for ¢ (¢)-

For the neutral limit, ¢3; (¢) = 1, and one has (app B, eq (B-26))
(usr) _ TPk

= . 48
Wi 21n (2 /20) (48)
Replacing the constants with their numerical values results in
(wr) _ g gqm-t (2 (49)
Wy 10Z0

For the free convection limit (app B, eq (B-34)),

(e _ T (5/4) ,31/21€2/3a}\//[6 \:(ﬁ) 1/3 - (ﬁ) 1/3] —-1/2 | 50

W \/g <0 Zr
Replacing the constants with their numerical values,
\1/3 -1/2
Wat) _ g9 [(z—) - 2.2} . (51)
Wy 20

Generally, z; is much larger than zo, and we may neglect the second term
in the square brackets, leaving

N\ -1/6
(e) _ 49 <Z—> . (52)

This result is very similar to an approximation derived by Schumann (1988)
(his eq (37)), the only difference being the numerical coefficient, which Schu-
mann determined as 0.52. It is reassuring that the approach in this report,
based on a statistical model for the gusts, yields nearly the same results as
Schumann’s model, which is based on an entirely different approach in-
volving bulk approximations.

Figure 4 compares a numerical evaluation of the average friction veloc-
ity, based on local application of the full Monin-Obukhov equation (15)
for ¢az (¢), to the two approximate analytical solutions, equations (49) and
(51). Also shown is u, g from equation (47), which is observed to be an
excellent proxy for (u.z) throughout the range of roughnesses. The ap-
proximation that the profiles under the gusts locally obey free-convection
similarity produces better agreement with the full local Monin-Obukhov
evaluation than does neutral similarity. For unrealistically small roughness
lengths (not shown on the figure), the neutral similarity curve does even-
tually become the better approximation. We conclude that in conditions of
vanishing wind speed, the local profiles more closely resemble their free-
convection forms than their neutral ones.

17




Figure 4. Local average
friction velocity as a
function of roughness
length for vanishing
mean wind. Three
curves are based on
different methods for
calculating local wind

profiles under large
eddies.

3.2 Mean Profiles
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Because Monin-Obukhov similarity is widely used to model the mean ver-
tical profiles of wind and temperature, an important practical matter is
whether the local-equilibrium model implies any significant, systematic
violations of global Monin-Obukhov similarity. More precisely, when the
mean gradients are normalized by u, and 7. as in equations (13) and (14),
are they still universal functions of z/L? We might furthermore ask, even if
the global application of Monin-Obukhov similarity is tenuous, can empir-
ically fitted values for w. and T, be devised that still produce good agree-
ment with atmospheric data?

Starting with the first question, let us write down equations for the mean
wind and temperature gradients in the context of local equilibrium. Ap-
plying equations (13) and (14) locally and then taking the global average,

yields
av) 1 k2
i, <u*1/cos0¢]\[ (LL>>‘/ and (53)
W) _ PQ/ . (=
dz Kz <“'*L¢H <LL)>' (4)

Next, when we nondimensionalize by multiplying with xz/u, and
—kzuy/P;Qs, we have
kz d(U)

usx dz

<u*L cosBo; <Li>> <u3L CoS 9>_1/2 , and (55)
L
_ kzu, d(T)

Plots of the nondimensional wind and temperature gradients calculated
from these equations are shown in figures 5 and 6. Four different values




Figure 5.
Nondimensional

wind gradient

(zk/us) (d(U) /dz) as a
function of ( = —z/L.

Figure 6.
Nondimensional
temperature gradient
(—zkus/ BQs)

(d(T) /dz) as a function
of ( = —z/L.
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of the ratio U, /w, are shown: 0.3, 1, 3, and 10. For a surface roughness
z0/2i = 1074, these four values correspond to —z;/L = K (wx / u,k)3 = 1200,
190, 26, and 1.6. The first value is extremely convective and probably rare
for the atmosphere. The second represents a fair summer day over land.

For the global application of Monin-Obukhov similarity to be valid, the
curves in figures 5 and 6 can depend only on z/L; that is, for all values of
U, /w,, they must collapse onto a single curve. Clearly this does not happen.
Substantial deviations from global Monin-Obukhov similarity are found
when U, /w, < 1 for the wind gradient and U, Jw, < 0.3 for the tempera-
ture gradient. The dependence of the nondimensional gradients on U, Jws
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may explain some of the scatter in measurements such as those made by
Businger et al (1971) and by Hogstrom (1988). The data should be reexam-
ined for dependence on the inversion height.

Besides U, /w,, the local-equilibrium theory also predicts a dependence of
the nondimensional gradients on zy/z;. By performing numerical evalua-
tions, I found this effect to be quite insignificant, being most discernable
when U, /w, < 1.

Next we turn to the question of whether we can still fit equations (16) and
(17) to surface-layer data with good results, even when there is a break-
down in the global application of Monin-Obukhov similarity. This amounts
to selecting values for u. and T, possibly different from their actual val-
ues, to fit the profiles at some set of sensor heights. Then we assess whether
these fitted values produce good agreement with the actual overall profiles.

To gain some insight into how the fitted values for u, and T, can differ from
their actual values, consider the equations for the ensemble mean profiles
derived from the local-equilibrium theory. The wind profile follows directly
from equation (22):

(U (2)) = % <u*L cos B hyy (izL— Ii(; )> . (57)

The mean temperature profile follows by averaging equation (21), with

(T (2)) = (T (2))):

@) =7+ F (rann (£.2)) 69

Because h;; and hy are complicated functions of w,y, it is not possible to
analytically derive a general equation for effective values of u, and 7. For
the idealized situation where neutrally stable conditions prevail locally, /5
and hy are logarithmic, and the two preceding equations become

(U() = ~ln = (uercos) . and (59)
K Z0
(T'(2)) = T (zp)— Pth In = <11,:L1> . (60)

Zh

Since the mean profile in neutral conditions, according to the global-
equilibrium theory, is (U (z)) = (u./k)In (z/z), the first of these equations
implies simply that (u,z cos@) plays the role of an effective value for ..
If the gusts are relatively strong and randomly oriented, (u,z, cos) can be
much smaller than (u, ). Similarly, —Q, (u,} ) plays the role of an effective
temperature scale in place of T, = —Q,/u, in the global theory.

Turning now to the other limiting approximation, where free convection
prevails locally, one can show (app B) that (U (2)) o {u2; cos ). Since the
global-equilibrium model predicts (U (z)) o w2, and u? = (u?; cos8) (eq
(46)), the effective friction velocity in free convection is the same as the




Figure 7. Ratio of
friction velocity
determined by fitting
measurements at 10-m
height to actual value
determined from
local-equilibrium
model.

actual friction velocity. In regards to the temperature profile, it becomes
independent of u, in free convection (see, for example (Kader and Yaglom,
1990)). Therefore in this extreme, there is no local variability in the tempera-

ture profiles, and T, = —Qs/u. can be used as an effective temperature
scale.

To elucidate these ideas, let us consider an example atmospheric boundary
layer with w, =3 m/s, 20 = 107°> m, and z; = 1000 m (Qs = 0.81 Ks/m).
The wind speed U, is varied. For each value of U,, fitted values of u, and T
are determined by matching equations (13) and (14) to the wind speed and
temperature at 10-m height. Figure 7 shows the resulting ratio of the fitted
value of u. (u.gt) to the actual value. For large U, Jwy, the fitted friction
velocity is the same as the actual value. As U, /w, becomes less than about
10, u. sy becomes less than the actual value, as would be anticipated from
the preceding discussion. Surprisingly, as Uy /w. — 0, the ratio approaches
a constant value smaller than one. Based on the preceeding discussion, the
asymptote should equal one. The reason behind this apparent discrepency
is that the free-convection limit is never truly attained. The gusts prevent
the turbulence from being in such a state locaily.

Figures 8 and 9 illustrate agreement between wind and temperature
profiles from the local-equilibrium model to those based on fitted val-
ues for u, and T. Plotted are the ratios [Ug (2) — (U (2))] / (U (2)) and
[Txe (2) — (T (2))] /(T (2)) for z = 2 m and z = 100 m, where Ug; (z)
and Ty (2) are the profiles calculated by fitting u. and 7. to measure-
ments at z = 10 m. Also shown are [Ugiob (2) — (U (2))]/ (U (2)) and
[Tyob (2) — (T (2))] / (T (2)) for z = 2m and z = 100 m, where Ugpop (z) and
Ty10b (2) are the profiles calculated from the global-equilibrium model. The
profiles calculated from the fitted values are always in good agreement
(relative error less than about 4%) with the local-equilibrium model, even
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Figure 8. Relative error
(in %) between wind
speed profile in
local-equilibrium model
and a profile
determined by fitting u,
and T, to measurements
at 10-m height. Errors
are shown for 2- and
100-m heights. Also
shown are relative
errors for global
Monin-Obukhov
similarity based on
actual values of u.,

and T..

Figure 9. Same as
figure 8, except for
temperature profile.
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for very small U; /w,. The global-equilibrium profiles for the wind speed
are in poor agreement with the local-equilibrium model, although agree-
ment for the temperature profiles is quite good. The reason for this behav-
ior was mentioned earlier: the local temperature profiles are independent
of u. in highly convective conditions, and therefore the global and local
models match in this case. In interpreting the results for the wind profiles,
one should keep in mind that values for U, /w, < 1 are unusual for the at-
mosphere. Even for U, /w, = 1, though, the global-equilibrium model can
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be off by more than 10 percent. Application of global similarity theory to
the wind profiles in highly convective atmospheric conditions is therefore
very tenuous, although when fitted values for u. and T, are used in place
of the actual ones, the theory can be made to work fairly well.

3.3 Temperature Variance

In this section, I explore the implications of the local-equilibrium model for
the temperature variance. The temperature variance is defined as

o3 () = ([T (2) = (T (NP) - (61)

Previous studies, based on a global similarity approach, have found the
surface-layer temperature variance in neutral conditions to be about 4.0T?
(e.g., Stull’s (1988) equation 9.5.3k). In freely convective conditions, the pre-
vious studies suggest o2 = 0.90T7 (—z/ L)"?/® (Kaimal et al, 1976; Caughey
and Palmer, 1979). The following equation smoothly interpolates between
these two limits:

2 2/311
9T _ _Z
75 =40 [1 4.4 ( L) } . (62)

Note that the temperature fluctuations are entirely “small scale”; that is,
since neither w, nor z; appear in the previous equation, the large-scale con-

vective eddies have not previously been observed to affect the temperature
variance.

In the context of local equilibrium, the large convective gusts can modify
the temperature variance in two ways. First, they can directly vary the tem-
perature through local adjustments to the vertical profile. Second, they can
indirectly affect the temperature variance by locally modulating o2 through
changes in u,. Let us decompose the temperature as follows:

T=(T)+Tc+t, (63)

where T is the change induced directly by the gusts and ¢ represents the
small-scale fluctuations obeying equation (62), except with local scales re-
placing the global ones. The variance is therefore

o3 = ((Te+1)?) = (T8) + 2 (Tat) + () - (64)
Let us decompose t as

t= O'T,Lf 3 (65)

where ¢ is a random variable having zero mean and unit variance. The fac-
tor o1 scales the variance locally in response to the gusts. Having factored
out o7 1, I can now consider the random variable ¢ a process independent

from the gusts. As a result, the direct and indirect contributions separate
from each other:

0% ~ (T2) + 2 (Tgor,L) (€) + (0% 1) (€2) = (T&) + (oF.1) - (66)
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Let us first consider the direct contribution, (TZ). By definition, T¢; =
(T'(2)), — (T (2)). From equation (21) (with z, appearing in place of z,,
as discussed at the end of sect. 2.2),

P z oz ) z oz
o= Tphy (2 2} = (o (S 22))] 7
T - IiTLhII<LL,LL> <7 1”1<LL LL>>] (67)

and therefore
L o 2
2.2 4A47~ _ *] 4.47» .
<T*L/IH (—LL —LL>> <T Lh <_L,;*‘LL>> ] (68)

w)= (2

Substituting 7,7, = —Q,/u.z, and normalizing with 6, = Q,/w,, we have

_ ﬁ 2 Wy 2}2 R B Wy ] R 2 (69)
O\ K Uy, HH Ly Ly Uy, H L. L ‘

Since z,/Ly, is proportional to (w, /u, L)B, the right-hand side is a function
of w.p/ws and z/L, and we know from the theorem (35) that (TZ) /62 must
depend on the dimensionless ratios U, /u., z/z;, and zg/ z;.

{7&)

6

Q

* B

With respect to the indirect contribution, the local temperature variance is
the same as equation (62), except that T, replaces T, and Lj, replaces L.
Making these replacements and normalizing the local friction velocity by

w,, We have
2 2 N 2/37 78
g7 Wy z
—— =4, 1+44{ —— . 70
02 . (“»&L) N < LL) ] -0

Similarly to the direct contribution, we know from equation (35) that
(07.1,)/62 must depend on the dimensionless ratios U, /w,, z /2, and zg/z;.

The local-equilibrium model prediction for U, /w, = 0.3 is broken down
and compared to global similarity in figure 10. The direct effect of the gusts
(Iocal modification of the vertical temperature profile) is insignificant. The
variance is almost entirely locally generated. But more importantly, the lo-
cal and global similarity models are nearly identical, even though this case
is highly convective by atmospheric standards. This behavior can be ex-
plained by the fact that the convective contribution to the variance, 0.90
T2 (-z/L1)"*? =090 (TgQg/ﬁgz)Q/g, is independent of u.,. Therefore
the gusts have a vanishing local effect in highly convective conditions. I ex-
amined several other combinations of U, /w, and z/z; and concluded that
the gusts cause no significant modifications to the temperature variance
for ordinary atmospheric conditions. The local-equilibrium model is there-
fore consistent with atmospheric observations, which have so far shown
no discernable dependence of the temperature variance on the large-scale
convective eddies.




Figure 10. Temperature
variance predictions for
U, /w, = 0.3. Solid
curve is total prediction
from local-equilibrium
model. Dashed curve is
contribution to
local-equilibrium model
caused directly by
gusts. Dotted curve is
total prediction from
global-equilibrium
model.

3.4

10-1

—2 | .
N 10
N
£
2 N\
2 ., Global similarity, total
? /
N g
© 4
% 103 Local similarity, direct only N E
z

Tl Local similarity, total
104 S s
100 101 102 103

Temperature variance, (o%(z))/eg

Vertical Velocity Variance

Previous experimental studies have shown that the vertical velocity vari-
ance, like the temperature variance, is concentrated at small scales. Panof-
sky et al (1977) found the vertical velocity variance in the surface layer to
be well represented by

2 2/3
0w _ _i
ZL3_16+2.9( L) : (71)
or, equivalently, by
2 2 2/3
v _ il z
o2 _1.6< *> +1.6 (z) . (72)

Unlike the mean temperature profile, the mean vertical velocity profile ex-
hibits no height dependence: it is essentially zero at all heights in the sur-
face layer. Therefore, in developing a local-equilibrium model, I should set
the large-scale (direct) contribution to the vertical velocity to zero. We have
simply o7, = (02, ), where o2 | is given by equation (72), with u., replac-

ing u,:
2/3
r16(2)

Figures 11 and 12 show the vertical velocity variance calculated from the
global- and local-equilibrium models. The figures are for roughness lengths
of zg = 107°2; and zg = 1073z, respectively. The ratio of the local pre-
diction (eq (73)) to the global prediction (eq (72)) is plotted. The local and
global predictions start to differ substantially when U, /w, < 1, particularly
for the rough surface. In fact, the variance nearly doubles near the ground

“3L>

w2

*

2
Ow

w}

z

24

=16 (73)
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Figure 11. Ratio of
vertical velocity
variance (02,) predicted
by local-equilibrium
model to global
similarity prediction,
for a smooth surface
(Z()/Zi = 10—5).

Figure 12. Same as
figure 11, but for a
rough surface
(20/57' = 10_3).
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for the rough surface when U, /w, = 0.3. The cause is mechanical turbu-
lence generated locally by gusts.

Let us analyze the behavior of the vertical velocity variance for small U, /w.
in more detail. Recall from section 3.1 that, in analyzing statistics of u.r,
the free-convection approximation for the profiles was found to be more
satisfactory than the neutral approximation. Applying the free-convection
approximation to the local wind profiles, we have from equation (B-34)

2 4/3,, 1/3 1/3 2\ 1/3 -1
<1$§>_\/‘BF~6 {<0> _<_> } . (74)

When I substitute numerical values for the constants and make the addi-
tional approximation zy < 2, the previous equation becomes

2 1/3
—3‘-*5—> =0.19 <59> . (75)
w 2

* “1

Hence, from equation (73),

02 > 2/3
—5=031224 L +16( ) . (76)
wE 2

The following approximate expression interpolates smoothly between the
mechanical and free-convection limits:

% 1/3 2\ 2/3
o2 = 1.6u? + |0.31 (?) + 1.6 (—) w? . (77)
) Zq

The only difference between this equation and the one from Panofsky et al
(1977) (eq 72) is the extra term, 0.31 w? (zg /zi)l/ 3, This formula is plotted
and compared to the local equilibrium prediction in figure 13. We see that

the approximate formula works best for U, /w. < 1 but is still satisfactory
for moderate U, /w,.

Horizontal Velocity Variance

Analogously to the temperature, the velocity component in the along-wind
(2-) direction can be decomposed as follows:

U={U)+Gztu, (78)

where u contains the small-scale fluctuations filtered out by the local aver-
aging operation. Therefore we have for the variance

o2 = <(U - (U))2> = (G2) +2(Gou) + (u2) . (79)
In principle, we could devise a formula for the horizontal velocity variance

similar to equation (62) for the temperature variance, interpolating between
the neutral and free-convection limits. However, the free-convection limit

27




Figure 13. Comparison
of approximate formula,
equation (77) (dashed
lines), to
local-equilibrium model
prediction (solid lines).
Calculations are for a
rough surface

(z0/2 = 107%).

28

10-1
£
.g U, =1
= 2
° 1072 §
N
T
€
[e]
z U, /w, =03

& U, /w, =10
10-3
102 10!

Vertical velocity variance, 63(=)/w?

for the horizontal velocity variance has not yet been conclusively observed
in the atmosphere. Apparently, the contributions to the variance from me-
chanical turbulence and the large-scale convective eddies nearly always
dominate any contributions from the smaller (z-) scale convective eddies.
(See, for example, the discussion in Kader and Yaglom (1990, pp 651-652).)
Therefore only the contribution from purely mechanical turbulence (the
neutral limit) need be included in the formulation for u. Locally, these fluc-
tuations scale in proportion to u,r.

Variances for shear turbulence also depend on the direction relative to the
mean wind. Representative values for the along-wind and crosswind stan-
dard deviations are 2.4 u, and 1.9 u,, respectively (Panofsky and Dutton,
1984). In the context of local equilibrium, we therefore model u as

u=(24cosf+19sin8) u.r¢ . (80)

where ¢ is a zero-mean, unit-variance random variable as in the previous
section. Based on the assumption that ¢ is independent of the gusts, the
cross term in equation (79) vanishes, leaving

02 (z) = (G2 (2)) + 5.8 (u? cos? ) + 3.6 (u2; sin 20) . (81)
A similar treatment for the crosswind variance results in
02(z) = <G§ (z)) +5.8 <113L sin?6) + 3.6 <U£L Ccos 20) . (82)

From equations (35) and (40), we know that (G2 (z)) and (G2 (z)) in
equations (81) and (82), after nondimensionalization with w2, depend
on the ratios U, /w., z/z;, and zo/z. The quantities (u?; cos?) /w? and
(u?; sin? @) /w? are independent of height and are therefore functions of
U, /w, and 20/z;. We conclude that o2 (z) /w? and o (z) /w? depend over-
allon U, Jw,, z/z;, and 20/ z;.



If we were to neglect the height dependence of (G2 (2)) and (G2 (z)) and
set (u?;) = u2 and 6 = 0, the previous expressions would reduce to 02 =
0.45w? + 5.8u2 and 02 = 0.45w? + 3.6u2. This simple addition of variances
from large-scale convective gusts and mechanical turbulence has been pre-
viously suggested by Panofsky et al (1977), Hojstrup (1982), Wilson and
Thomson (1994), and Peltier et al (1996). But equations (81) and (82) in-
corporate additional phenomena not present in the previous formulations.
Most significantly, they include height dependence of the gust structure,
and the conversion of energy from the gusts to local mechanical turbulence.

To better understand the behavior of equations (81) and (82), let us de-
termine explicit results for the idealized cases of local neutral and free-
convection profiles underneath the gusts. For the neutral limit, equation
(20) yields the two component equations

u;L In = cos = (U(2)) + Gz (2) and (83)
20
Us], z _
~ lnz—osme = Gy(z) . (84)

Squaring both equations and taking expected values, we have

1

(G2(:) = —? Zio (u? cos®8) — (U (2))? and (85)
<GZ (2)) = —32— In? Z—ZO <uiL sin? 9) , (86)

where
(U(z)) = %lnzio (U, cosB) . (87)

The various moments involving u,;, and 6 are evaluated in appendix B as
equations (B-20), (B-22), and (B-23). Incorporating those results, we have

_ 5.857U? B2w?
- In?(z,/2) 2In? (zr/20)

A similar treatment for the crosswind variance results in the same formula
but with 3.6 replacing 5.8 in the first term. In equation (88), the first term on
the right arises from shear production by the mean wind. The first and sec-
ond terms in the square brackets represent the direct effect of the gusts and
local shear production, respectively. Note that the local shear production is
height independent.

AQ

[ln2 (2/z0) + 9.4/@2] . (88)

Now let us reanalyze the problem in the free-convection limit. If the mean
wind speed is negligible, (u2; cos®>¢) and (u?; sin?6#) must both equal
(u?;) /2, leaving

o2y (2) =05(G?(2)) + 4.7 (u?) . (89)

Away from the influence of the ground, one would have 02, =~
0.5(G? (2;)) = 0.45w2. Very near the ground, however, surface drag dimin-

ishes the gust velocity, so that (G? (z)) must become small. Shear forces can
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counteract this decrease in the variance by locally enhancing (u?; ). In the
limit of large —z/L;, and —z¢/L, one has from equations (13) and (15)

3u? 2\ /3 2\ 1/3
U (2)=G(z) ~» ———=L__ (—'—) (= 90
L(2)=G(2) h»:/:sa}/,-*u,*[ =) -(3) (90)

so that
2 2
0w 3 N\ s
(G2 (2)) = <—~—H4/3(1}\/13U‘*> {(m) (2)7] Gl on

Therefore, to evaluate equation (89), we need (v?,) and (u}, ). These can
be found in appendix B as equation (B-34). One subsequently finds that

(92)

<

. 2 ; .

ore(z) | 1-(20/0)"? +4.7\/E,z3h-4/30}\§3 2\

w2 - 9 (. /. \1/3 6 ’
* ]. (K/O/»Cr)

Substituting numerical values for the constants, we have

2 1/3
+0.80 (2 . (93)

2

~1

Tin (2) _ o4 | Lo (20/2)”
PR PR
wy 1—(z0/2)

The first term on the right is the direct effect of the large-scale gusts,
whereas the second term represents local shear production. These terms
are analogous to the second and third in equation (88). Equation (93) dif-
fers from the usual one for the horizontal velocity variance in a convective
boundary layer, namely o2, (2) = 0.45w?. These differences are significant
near the ground, particularly over rough surfaces. If zo = 1077, the lo-
cal shear production term equals 0.089 w?, which amounts to a 20 percent
increase in the variance at z = z,.

Let us now consider some example calculations. Figures 14 and 15 show the
ratio of the along-wind velocity variance predicted by the local application
of Monin-Obukhov similarity to the global prediction, o2 = 0.45w? +5.8u3.
The former plot is for a relatively smooth surface (zo/z; = 1079%), whereas
the latter is for a rough surface (zo/z; = 1073). The local theory predicts a
substantial decrease of the velocity variance near the ground, particularly
over a rough surface when U, /w, < 1. The primary cause is the previously
mentioned slowdown in the velocity of the gusts when they interact with
the surface.

Figures 16 and 17 show the ratio of the along-wind to the crosswind ve-
locity variance (02/c2), for the smooth-surface case (z0/z; = 107°). The
former plot is the ratio as a function of height, whereas the latter is the ra-
tio as a function of U, /w,. In highly convective conditions (U, /w. < 1),
the turbulence structure is nearly isotropic and this ratio converges to 1. In
high-wind conditions (U, /w, > 1), this ratio is dominated by shear turbu-
lence and is roughly equal to 5.8/3.6 = 1.6. Furthermore, the ratio is larger
near the ground, indicating a more pronounced anisotropic structure there.




Figure 14. Ratio of
along-wind velocity
variance (c2) predicted
by local-equilibrium
model to global
similarity formula 0.45
w? + 5.8u2, for a smooth
surface (zo/z; = 1075).

Figure 15. Same as
figure 14, but for a
rough surface
(Zo/Zi = 10_3).
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Figure 16. Ratio of
along-wind to
crosswind velocity
variance (02 /0,) in
local-equilibrium
model, as a function of
height, for a smooth
surface (z9/z; = 107°).

Figure 17. Ratio of
along-wind to
crosswind velocity
variance (¢2 /o) in
local-equilibrium
model, smooth surface
case (zg/2z; = 1079).
Ratio versus wind
speed is plotted.
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At greater altitudes, the large gusts play a more prominent role, thereby
diminishing the anisotropy.

Figure 17 suggests that near the ground, for moderate values of U, /w,,
the crosswind variance may actually exceed the along-wind variance. This
behavior is caused primarily by the action of gusts whose orientation runs
counter to the prevailing wind direction. In the presence of such gusts, the
local conditions can very closely approximate free convection. Gusts in the
prevailing crosswind direction cannot cause local slackening of the wind to
such a degree.



As illustrated by figures 14 through 17, the local-equilibrium model pre-
dicts behavior of the surface-layer horizontal velocity variances, which is
more complex than previously thought. It would be desirable to have a
simple equation that approximates the full behavior of the local equilib-
rium model. We discovered in deriving equations (88) and (93) that there
are three contributions to the variance: global shear production by the mean
wind, local shear production from the gusts, and the direct contribution
from the gusts. For the along-wind variance, the global shear production
contribution can be approximated as 5.8 2. This term would naturally di-
minish with decreasing mean wind speed. Local shear from the gusts is im-
portant primarily when U, /w, < 1. Since we found in section 3.1 that the
free-convection approximation works reasonably well in such situations,
we can approximate this term with its value from equation (93), namely
0.89 w2 (20/2)*/3. For the direct contribution from the gusts, we might try
using (Uy, (2)) to approximate the general shape of the profile:

L Bt U)o
2 (U (Zr)>2

(G2 () o)
One can show, in fact, that this equation is exact for both the local neutral
and local free-convection profiles. The approximation can be applied by
calculating (U, (2,)) from equation (12), solving equation (47) for u.. ¢, and

then using this value to estimate (U, (z)). Putting these results together
yields:

2
Uy eff z 2
Ynetipy (2 20 1/3
(2) = 5.8u2 + 0.45[ . <Le‘§ L‘*)] +0.89 (2 w? . (95)
<UL> Z

An analysis of the crosswind variance results in the same formula but with
3.6 replacing 5.8 in the first term. This approximation is compared to the full
local equilibrium model in figure 18 for U, /w. = 0.3 and z5/2; = 107°. Also
plotted are curves based on local neutral (eq (88)) and local free-convection
(eq (88)) profiles under the gusts. The approximate formula, equation (95),
is quite close to the full Monin-Obukhov calculation. I have analyzed other
combinations of U, /w, and zp/z; with similar satisfactory results. The ef-
fective value for u.; works quite well as a shortcut to the full calculation
with the pdf.
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Figure 18. Local
equilibrium predictions
for along-wind velocity
variance using several
methods of calculation.
For all curves, U, /w, =
0.3 and zp/z; = 1075.
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Summary

The local-equilibrium model for gusts developed in this report suggests
significant violations of widely used similarity theories, particularly when
the atmosphere is very convective. For example, the inversion height (z;)
appears to affect scaling of the mean wind and temperature gradients. The
primary physical reason for this behavior is that the gusts create significant
local modifications to the friction velocity. On the other hand, the rough-

ness length appears unimportant for the gradients, as had been previously
concluded.

Regarding the variances, the vertical velocity variance in convective con-
ditions is predicted to have significant dependence on both the inversion
height and roughness. Near the ground, the vertical velocity variance is en-
hanced by local shear in the gusts. The horizontal velocity variances have a
strong dependence on height and roughness, even for very moderate con-
vection, that has not been previously recognized. The physical reason is
that the wind speed in the gusts must diminish very near the surface, ob-
taining a roughly logarithmic height dependence. Of the variances consid-
ered in this report, only the temperature variance appears to be nearly un-
affected by the gusts.

The results of this report are in qualitative agreement with the large-eddy
simulations (LES) of Sykes et al (1993) and Khanna and Brasseur (1997). The
former authors demonstrated a dependence of boundary-layer structure
on roughness in free convection. The latter found that velocity statistics de-
viate significantly from Monin-Obukhov similarity, whereas temperature
statistics do not. But these LES studies cannot be viewed as providing con-
clusive evidence in support of the local-equilibrium model: the boundary
condition in LES is essentially the same as the one in the local-equilibrium
model, except that it is applied between the lowermost grid level and
the surface, instead of z, = 0.1z; and the surface. Also, LES has well-
documented shortcomings near the surface, because of its finite resolution.
Therefore convincing verification of the predictions of the local-equilibrium
model will ultimately require real atmospheric data.
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Appendix A. Reference Height and Gustiness Coefficient

An important modeling issue is what value should be used for the reference
height. Grachev et al (1998) used z, = 10 m, because this height is a stan-
dard one for tower-based wind measurements. On the other hand, because
10 m is usually well within the surface layer, the structure of the gusts could
be significantly disrupted by the ground there. Schumann (1988) based his
model on a surface-layer height of z, = 0.1z;. Sykes et al (1993) took the
additional step of deriving an analytical expression for z, (zs in their no-
tation). However, Grachev et al (1997) subsequently demonstrated that the
analysis of Sykes et al, by assuming that the local profiles under the large
eddies are logarithmic, leads to implausible results.

I follow Schumann in this report by simply setting z, = 0.1z;. The main mo-
tivation for using this value instead of 10 m is that by placing the reference
height in the vicinity of the top of the surface layer, the probability distribu-
tion more reasonably represents the forcing from the gusts rather than the
response to them. Then the isotropic distribution, equation (8), is justifiable.
Admittedly, in conditions with high mean wind shear (large U, /w.), the
assumption of isotropy will break down even at z. = 0.1z;. However, the
effect of the gusts on surface-layer statistics is negligible in such situations,
since shear instability, rather than the large-scale convective eddies, will
dominate the surface layer. The prescribed pdf for the gusts is at issue only
for small and moderate wind speeds, for which the assumption of isotropy
zr = 0.1z; is quite reasonable.

The other model constant is the gustiness coefficient 3. Previous authors
have suggested several possible values. Based on their analysis of marine
data at a 10-m height, Fairall et al (1996) concluded that 8 ~ 1.25. Schu-
mann (1988) determined that 8 = 0.7 £ 0.1 from his model analysis. Bel-
jaars (1994) deduced that 5 ~ 1.2 from the numerical simulations of Sykes
et al (1993).

A value for 3 can also be inferred from other sources based on the reason-
ing that the horizontal velocity variance for z > 0.1%; is determined primar-
ily by the large-scale convective eddies. From measurements made in the
lower boundary layer by aircraft, Caughey and Palmer (1979) estimated the
horizontal velocity variances as 0.35w?. Since the variances (G%) and (G2)
are equal to $%w?/2, this implies that 8 ~ 0.84. Similarly, Deardorff and
Willis (1985) found 012“, (2) = 0.45w? in their laboratory experiment, which
implies that 8 ~ 0.95.

For the calculations in this report, I set 8 to 0.95, since this value falls

roughly in the middle of the range of previous research results reviewed
here.
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Appendix B. Moments of Friction Velocity and Wind Direction

This appendix derives equations for various moments of the friction veloc-
ity and wind direction that appear in the main text. The moments have the
general form (ul; cos™ #sin" §). Unfortunately, as discussed in the main
text, analytical results for these moments cannot be derived when the full
Monin-Obukhov form for the dimensionless wind gradient (eq (15)) is used.
Therefore, in this appendix, I consider two limiting approximations for the
local wind and temperature profiles, based on the limiting cases of neutral
and free-convection stability.

In the neutral limit, ¥, (¢) = 0 and the local velocity has a logarithmic
profile:

UL (2) = e, [(U (2)) + Ga (2)] + €,Gy (2) = (e, cos 0 + e, sin ) %é In % . (B-1)

Evaluating this equation at z = z, and taking the magnitude, one has

wp = KlIn~ ;— (U +Go)? + G2 (B-2)
0

Now, substituting equations (B-2), (29), and (8) into (9) results in

4 o mpangy K <[ o qo]l@mn/2
(u?; cos™fsin” 0) = TN Py /_Oo /_Oo [(Ur + Gy) +Gy]

G:+G,

X (U’r‘ + Gm)m GZ exp (—W

) G4 dGy . (B-3)

Converting to cylindrical coordinates p and 6 such that pcosf =
(Gz + Uy) /Bws and psin 0 = Gy /fw,, the double integral becomes

K4
—q m AT
U, COS f sin 9> =

-2 oo 21 _

WG_UT / / pTt" cos™ Osin™ f exp (—p® + 2U cos§) df dp ,
T/ <0 0 0

(B-4)

where T.p, = u.r/Bw, and U, = U,/ fws.

We can perform the integral over 6 using the integral representation of the
modified Bessel function (e.g., Abramowitz and Stegun (1965), eq (9.6.19)):

I (2) = 1 /O e*°%% cos (nf) df . (B-5)

T
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(@)

(u!; cosf)

(w,

(w

q
*xL

cos? 0)

sin? 9> =

Considering specific values of m and n, we therefore have

2/‘1’(1 RF'Z x g+1 ._/)'2 o

= W)y PR A (B-6)
2k1 2 [ 2 —

= me L r / pq+1(3 4 Il <2U7/)) (][).’ (B-7)
Zp/Z Jo
Hq _‘[‘7:2 x I 5 _ .

T Iz /~0)C ' 7-/ pT e (1o (2U,p) + 12 (2U,p)] dp. and  (B-8)
“p /< 0
K9 _i? o ol 2 _ .

In? (2 /~0)e ' 0 pe [10 (QUrP) =1 (QUrP)] dp . (B-9)

Zrl &

The latter two relationships follow from the identities 2 cos?20 =1+ cos26
and 2 sin? 6 = 1 — cos 26.

The remaining integrals in equations (B-6) through (B-9) all have the form

oC
/ the=CI; (bt) dt .
0

The strategy for performing these integrals depends on whether k — j is
even or odd. When it is odd, the starting point is the following relationship,
which applies to k — j = 1:

e 2 b 2

/ e UL, (bt) dt = ——e" /1 (B-10)
0

This relationship can be found in standard tables of integrals. For exam-
ple, it is equivalent to equation (11.4.29) in Abramowitz and Stegun (1965),
after applying their equation (9.6.3). The cases k — j = 3.5.... can be re-
duced to equation (B-10) by repeated applications of the recurrence formula
Iy (2) = I,y () — (2n/2) I, (x). Solutions for even k — j are based on the
following result (Abramowitz and Stegun’s eq (11.4.32)) for k — j = 0:

oC Y 2
/ e I, (bt) dt = geb“/slv/g (%) . (B-11)
0

The cases k — j = 2,4, ... can be determined through integration by parts.
In the formula [udv = wv — [ vdu, repeatedly set v = e~ until integrals
having the same form as equation (B-11) result. For reference, the special

cases of interest are listed here:




e’} 2
L) dt = P, (b—> (B-12)

8
b2 b2
2 I (bt) dt = 1£geb2/8 {(4-% bQ) Io (g) + %L <'§>} (B-13)
2 0T (bt) dt = %ebZ/‘* (B-14)
2
Be "Iy (bt) dt = %ebm (B-15)

detronar = L8 0 o i) ()« eewn (5)] @

8

TS e

2
3™ I (bt) dt = %eb2/4 : (B-17)

With these integrals, we can now write down the following equations for
moments of the local friction velocity:

_2 -
(mp) = YR/ T, (g_) | (B-18)
K 2
(W) = __ VTR T <1+U2)I v, +TI v, (B-19)
LT 910 (2, /20) r) 0\ 2 W ’
_ _ K'UT‘
(Uyp cosb) = (2 /z0) (B-20)
2777 72 72
72 _ _ViEUr g 72\ 7. [ Ur 72\ 7, (Y )
(T cost) = pirr—Tse [(3+2U7) Io( 5 > +(1+207) ( =)l @2
2
_9 9 _ K 772 _
(@reos’) = 70 ) (1+2UT) . and (B-22)
2
(@ sin20) = —5—— . (B-23)

Since Iy (0) = 1 and I1 (0) = 0, in the limit U, — 0, these equations become

() V7 In (zr/20)

Up) = > (B-24)
_\ _ __Vmk
(@) = 5 T (B-25)
(T, cosf) = (T2 cos 9) =0, and (B-26)
2
_ o . K
<U3L cos? 0) = <uzL sin? 0> = W . (B-27)

The analysis for the free-convection limit proceeds similarly to the neu-
tral limit. Instead of equation (B-1), we use ¥s ({) = In¢ + 3 (—ap )3
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(Grachev et al, 1998), resulting in

UL (2) = e [(U (2)) + G2 (2)] + €,Gy (2)

22 NUB B
= (e, cosf + e, sinf) ————I%—— <—i> - < d > (B-28)
k3a)w, | \#0 '

instead of equation (B-1). Evaluating this equation at z = z, and taking the
magnitude, we find that

n/2 -n/2
. H4/3a1/3w* 5 1/3 - 1/3 ‘
<“*L> = ( ?f\[ <TO_> - (%) <G'”/2 (z,.)> .
Ao ~r

2

l\?

(B-29)
Therefore
. /2 : -q/2
1 H4/3al/3 q . 1/3 - 1/3 —

_,q MPgin™ 0) = = M o N ek /—U,, B-
(ul; cos™ Bsin" ) ~ (—3[3 (z()) <2r> € (B-30)
oo 2w . ) _

X / / p?2+ 1 cos™ B sin™ O exp (=p* +2U, cos ) ddp . (B-31)
o Jo

The integral over § proceeds in the same manner as the neutral limit. When
q is even, we can also determine the remaining integral over p using the
previous methodology. Integration for odd ¢ leads to confluent hypergeo-
metric functions. However, since the free-convection limit should be useful
only for small U,, we may simplify the integrations by setting U, = 0. With
this approximation,

1 K4/3a}\§3 as .\ 1/3 .\ 1/3 —4/2
=4 saaT ~ “1 “i
<U*L cos™ @ sin™ 9> jad ; —35——*’ <Z(;> - (;’) (B—32)

oo 2w
X / / P12+ cos™ @sin” f exp (—pQ) dfdp . (B-33)
0o Jo
The integrations now yield

A/351/3 q/2 N1/3 Y _q/2
@) = T(g/a+1) | —=2L (:1) _ <_> | 530
3 20 Zp

(Tl cosf) = 0, (B-35)
PUERVANN WOUNSVE N\ 1/3]-9/2
(ul; cos®0) = (u!, sin?f) = F(q/;1+ D (h Sl ) [(—7> - <%) } , (B-36)
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(@, sin?0) =

Figure B-1. Statistical
moments (%..z) and

(T r cos 0) as a function
of normalized wind
speed U, Local
equilibrium predictions
that use full
Monin-Obukhov
similarity, as well as
approximate
predictions in neutral
and free-convection
limits, are shown.
Roughness length is

10%2;. (Free-convection
10~

prediction for
(T, cos 6) is zero.)

Figure B-2. Same as
figure B-1, except for
statistical moments
(Tr, cos? §) and
(2, cos? 6).
(Free-convection
prediction for

(W2, cosb) is zero.)

and

[(g/4+1)

2

2 —q/2
n4/3a}\43 e <ﬁ>1/3 ~ <ﬁ) 1/37 -9/
35 20 Zp

(B-37)

Figures B-1 and B-2 compare the neutral and free-convection limits to
full Monin-Obukhov similarity for moments involving .z and cosf. The
plots show that neither the neutral nor the free-convection limits provide
a very satisfactory approximation. As U, increases, the neutral limit pre-
diction converges very slowly to full Monin-Obukhov similarity, differing

by more than 10 percent even at U, = 10. The free-convection prediction

very roughly approximates (to within about 30%) the moments (@,;) and
(W% cos?§) when U, < 1.
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